حدث خطأ. التفاصيل إخفاء
لديك صفحات غير محفوظة. استعادة إلغاء

Institute for Health Metrics and Evaluation

The Institute for Health Metrics and Evaluation (IHME) is an independent global health research center at the University of Washington that provides rigorous and comparable measurement of the world's most important health problems and evaluates the strategies used to address them. IHME makes this information freely available so that policymakers have the evidence they need to make informed decisions about how to allocate resources to best improve population health.

All datasets:  G
  • G
    • أيلول 2017
      المصدر: Institute for Health Metrics and Evaluation
      تم التحميل بواسطة: Knoema
      تم الوصول في: 14 تشرين الثاني, 2017
      تحديد مجموعة بيانات
      The Global Burden of Disease Study 2015 (GBD 2015), coordinated by the Institute for Health Metrics and Evaluation (IHME), estimated the burden of diseases, injuries, and risk factors at the global, regional, national, territorial, and, for a subset of countries, subnational level. As part of this study, estimates for obesity and overweight prevalence and the disease burden attributable to high body mass index (BMI) were produced by sex, age group, and year for 195 countries and territories. Estimates for high BMI-attributable deaths, DALYs, and other measures (1990-2015) are available from the GBD Results Tool. Files available in this record include obesity and overweight prevalence estimates for 1980-2015. Study results were published in The New England Journal of Medicine in June 2017 in "Health Effects of Overweight and Obesity in 195 Countries over 25 Years."
    • أيار 2014
      المصدر: Institute for Health Metrics and Evaluation
      تم التحميل بواسطة: Kirill Kosenkov
      تم الوصول في: 27 آب, 2015
      تحديد مجموعة بيانات
      Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013. Comparable estimates based on systematically identified surveys, reports, and published studies (n=1769) that included data for height and weight, both through physical measurements and self-reports, using mixed effects linear regression to correct for bias in self-reports. Data for prevalence of obesity and overweight by age, sex, country, and year (n=19 244) obtained with a spatiotemporal Gaussian process regression model to estimate prevalence with 95% uncertainty intervals (UIs). Research by the staff of the Institute for Health Metrics and Evalutaion with co-authors. Published online 28 May 2014, "The Lancet" Volume 384, No. 9945, p766–781. DOI: http://dx.doi.org/10.1016/S0140-6736(14)60460-8

بيان الخصوصية وسياسة ملفات تعريف الارتباط الخاصة بنا

يستخدم موقعنا ملفات تعريف الارتباط لتحسين تجربتك على الإنترنت. تم وضعها على جهاز الكمبيوتر الخاص بك عندما قمت بتشغيل هذا الموقع. يمكنك تغيير إعدادات ملفات تعريف الارتباط الشخصية من خلال إعدادات متصفح الإنترنت.

سياسة الخصوصية